КОМИТЕТ ПО ОБРАЗОВАНИЮ ПСКОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ПСКОВСКОЙ ОБЛАСТИ «ЛИДЕР»

ДЕТСКИЙ ТЕХНОПАРК «КВАНТОРИУМ» Г. ВЕЛИКИЕ ЛУКИ

РЕКОМЕНДОВАНО:

на заседании педагогического совета

ГАОУ ДО «Лидер»

Протокол от 14.08 2013 N3

УТВЕРЖДАЮ Зам. дирентора ТАОУ ДО «Дидер»

И.В. Васильев

Дополнительная общеобразовательная общеразвивающая программа «Blender. Основы 3D моделирования» Срок реализации: 72 часа

Направленность: Техническая Возраст обучающихся: 10-18 лет

> Составитель: Орлова Ольга Николаевна, педагог дополнительного образования

1.1 Пояснительная записка

Программа «Blender. Основы 3Д моделирования» разработана в соответствии с требованиями нормативных документов:

- ФЗ РФ от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации»
- ФЗ РФ от 14.07.2022 г. №295-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации»
- Указ Президента РФ от 7.05.2012 г. № 599 «О мерах по реализации государственной политики в области образования и науки»
- Концепция развития дополнительного образования детей, утверждена распоряжением Правительства РФ от 31 марта 2022 г. № 678-р
- Приказ Министерства просвещения РФ от 27.07.2022 г. №629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»
- Примерные требования к содержанию и оформлению образовательных программ дополнительного образования детей (письмо Минобрануки РФ от 11.12.2006 № 06-1844)
- Постановление Главного государственного санитарного врача РФ от 4.07.2014 г. № 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей»
- Письмо Минпросвещения России от 09.09.2023 № АБ-3935/06 «О методических рекомендациях по формированию механизмов обновления, содержания, методов и технологий обучения в системе дополнительного образования детей, направленных на повышение качества дополнительного образования детей»
- Положение об общеобразовательных общеразвивающих программах дополнительного образования в Детском технопарке «Кванториум» в городе Великие Луки, утверждено приказом и.о. директора от 04.08.2023 № 1-13/61

Данная программа дополнительного образования направлена на ознакомление обучающихся с Blender - профессиональное программное обеспечение для создания трёхмерной компьютерной графики, включающее в себя средства моделирования, скульптинга, анимации, симуляции, рендеринга, постобработки и монтажа видео со звуком, компоновки с помощью «узлов» (Node Compositing), а также создания 2D-анимаций. Содержание занятий выстроено так, чтобы при всей сложности материала, обучающиеся могли максимально эффективно воспринимать информацию и выполнять на практике поставленные задачи.

Направленность программы: техническая.

Актуальность и новизна программы

Актуальность программы заключается в развитии у современных детей, начиная с младшего возраста, углубления межпредметных связей, понимания и творческого интереса к таким общеобразовательным учебным дисциплинам как физика, математика, информационные технологии, их практическое применение, что является необходимым для успешной самореализации в современном мире как востребованных технических специалистов. Данная образовательная программа поможет обучающимся освоить основные навыки работы на высокотехнологичном оборудовании, познакомятся с теорией решения изобретательских задач, основами инженерии, основными компонентами электронной техники, понять принципы работы и возможности современного оборудования, его практического применения многих современных электронных и электромеханических устройств, получат практически навыки в конструировании и построении различных устройств и механизмов, что в свою очередь разовьёт интерес к техническим специальностям, рабочим профессиям, научному техническому творчеству и высокотехнологичному предпринимательству.

Отличительные особенности программы

Отличительной особенностью данной дополнительной общеобразовательной общеразвивающей программы является то, что она представляет собой курс, на основе которого будет строиться дальнейшая работа в любом из направлений инженерно-технического творчества: промробоквантум, IT-квантум, промдизайнквантума, а также тем, кто планирует продолжить обучение в профессиональных образовательных организациях и вузах технического профиля.

Адресат программы

Данная образовательная программа разработана для работы с обучающимися от 10 до 18 лет. Программа предусматривает отбор мотивированных детей для продолжения обучения на углубленном модуле квантума.

Объем и срок освоения программы

Программа рассчитана на 1-3 месяца, существует возможность интенсивов от 14 дней. Количество учебных часов по программе: 72 академических часа (24 занятия по 3 академических часа). Форма обучения: очно-заочная с применением дистанционных технологий.

Режим занятий, периодичность и продолжительность занятий

Программа «Blender. Основы 3Д моделирования» рассчитана на 1-3 месяца обучения, существует возможность интенсивов от 14 дней. Длительность и количество занятий - 3 академических часа 2 раза в неделю (1 академический час равен 35 минутам, не включая перерыв). Общий объем 72 академических часа.

1.2 Цели и задачи программы

Цель — развитие у обучающихся конструкторско-технологических, логических, коммуникативных способностей и умений, формирование у детей исследовательской и творческой активности в ходе преподавания им системы знаний, привитие навыков работать как самостоятельно, так и в команде. Создание оптимальных условий для всестороннего развития творческой личности обладающей системой знаний и умений в области практического применения высокотехнологичного оборудования через обучение детей приёмам самостоятельной работы, привитие умений поиска и использования информации для решения конструкторских и изобретательских задач. Освоение инженерных технологий подразумевает получение ряда базовых компетенций, владение которыми критически необходимо для развития изобретательства, инженерии и молодежного технологического предпринимательства, что необходимо любому специалисту на высокотехнологичном конкурентном рынке труда.

Задачи:

Обучения:

- познакомить с основами инженерии и решения изобретательских задач;
- научить проектированию в Blender, созданию трёхмерной компьютерной графики, включающее в себя средства моделирования, скульптинга, анимации, симуляции, рендеринга, постобработки и монтажа видео, а также создания 2D-анимаций;
- научить практической работе на аддитивном оборудовании;
- знакомство с основами программного создания 2D и 3D-моделей;
- реализация знакомства с современными профессиями технической направленности.

Развития:

- формирование навыков программирования и управления высокотехнологичным оборудованием;
- усиление внутренней мотивации к получению знаний;
- развитие творческого мышления;
- формирование способностей разнопланового анализа информации.

Воспитания:

- формирование умений: работать в команде; вести обсуждение технических идей и предложений; корректно отстаивать свое мнение;
 - формирование творческого отношения к выполняемой работе.

1.3 Содержание программы Учебно-тематический план

$N_{\underline{0}}$	Наименование разделов и тем	часы		
Π/Π		всего	теория	практ.
Раздел	1 Знакомство с программой Blender.	I.		1
1.	Вводное занятие. Вводный инструктаж по ТБ. Методы поиска изобретательских задач.	3	1	2
2.	Blender. Интерфейс программы. Работа с окнами.	3	1	2
3.	Способы навигации в окне 3Д вида. Работа с меню. Поля ввода.	3	2	1
4.	Основы моделирования. Параметр Scale.	3	2	1
5.	Топология. Работа с множеством объектов.	3	1	2
6.	Цифровой скульптинг.	6	3	3
7.	Создание материала и текстурирование 3Д – модели.	6	3	3
8.	Знакомство с принципом анимации по ключевым кадрам.	6	3	3
9.	Знакомство с виртуальным освещением.	6	2	4
10.	Визуальные эффекты.	6	3	3
11.	Знакомство с анимацией. Созданием анимации движения 3Д – объекта.	6	3	3
Раздел	2 Аддитивные технологии.			
12.	Создание собственной 3Д модели.	3	1	2
13.	Создание объемно-пространственной композиции в программе.	9	2	7
14.	Подготовка моделей к печати в программной среде Cura.	3	1	2
Защит	а проекта.			
15.	Предзащита и доработка проектов.	3	-	3
16.	Защита проектов. Итоговая рефлексия.	3	-	3
ИТОІ	O	72	28	47

Содержание учебно-тематического плана

Тема занятия	Цель	Задачи	Soft skills	Hard skills	Стадия работы над итоговым проектом				
Раздел 1 Знакомство с программой Blender.									
Вводное занятие. Вводный инструктаж по ТБ. Методы поиска изобретательских задач.	Познакомиться с областью инженерии	Знакомство с теориями и базовыми знаниями	Знать основы и принципы теории решения изобретательски х задач	Владеть базовыми знаниями работы в современном инженерном оборудовании.	Введение в контекст				
Blender. Интерфейс программы. Работа с окнами.	Познакомится с основными понятиями. Получение знаний	Применение полученных знаний в дальнейшей работе	Способность применения теоретических знаний на практике	Уметь работать на высокотехнологиче ском оборудовании	Освоение учебного материала.				
Способы навигации в окне 3Д вида. Работа с меню. Поля ввода.	Познакомится с основными понятиями. Получение знаний	Применение полученных знаний в дальнейшей работе	Способность применения теоретических знаний на практике	Уметь работать на высокотехнологиче ском оборудовании	Освоение учебного материала.				
Основы моделирования. Параметр Scale.	Познакомится с основными понятиями. Получение знаний	Применение полученных знаний в дальнейшей работе	Способность применения теоретических знаний на практике	Уметь работать на высокотехнологиче ском оборудовании	Освоение учебного материала.				
Топология. Работа с множеством объектов.	Познакомится с основными понятиями. Получение знаний	Применение полученных знаний в дальнейшей работе	Способность применения теоретических знаний на практике	Уметь работать на высокотехнологиче ском оборудовании	Освоение учебного материала.				

Цифровой	Познакомится с	Применение	Способность	Уметь работать на	Освоение учебного
скульптинг.	основными	полученных знаний	применения	высокотехнологиче	материала.
	понятиями.	в дальнейшей работе	теоретических	ском оборудовании	_
	Получение знаний	-	знаний на		
	<u>.</u>		практике	V C	
' '	Познакомится с	Применение	Способность	Уметь работать на	Освоение учебного
1	основными	полученных знаний	применения	высокотехнологиче	материала.
7 1 1	понятиями.	в дальнейшей работе	теоретических знаний на	ском оборудовании	
3Д – модели.	Получение знаний		практике		
Знакомство с	Познакомится с	Применение	Способность	Уметь работать на	Освоение учебного
	основными	полученных знаний	применения	высокотехнологиче	материала.
1 '	понятиями.	в дальнейшей работе	теоретических	ском оборудовании	материала.
'	Получение знаний	в дальненшен рассте	знаний на		
клю тевым кадрам.	получение знании		практике		
Знакомство с	Приобретение	Самостоятельное	уметь строить	владеть базовыми	Освоение учебного
виртуальным	знаний по	выполнение	работу исходя из	навыками работы в	материала.
освещением.	изготовлению и	трёхмерной модели	принципов	современном	
	использованию 3D	специальной	CDIO, SCRUM.	инженерном	
	модели.	программе, с		программном	
		применением		обеспечении	
		различных операций.			
Визуальные	Приобретение	Самостоятельное	уметь строить	владеть базовыми	Освоение учебного
эффекты.	знаний по	выполнение	работу исходя из	навыками работы в	материала.
* *	изготовлению и	трёхмерной модели	принципов	современном	1
	использованию 3D	специальной	CDIO, SCRUM.	инженерном	
	модели.	программе, с		программном	
	, ,	применением		обеспечении	
		различных операций.			
Знакомство с	Приобретение	Самостоятельное	уметь строить	владеть базовыми	Освоение учебного
	знаний по	выполнение	работу исходя из	навыками работы в	материала.
	изготовлению и	трёхмерной модели	принципов	современном	•
' '	использованию 3D	специальной	CDIO, SCRUM.	инженерном	
·	модели.	программе, с		программном	
объекта.	, ,	применением		обеспечении	
		различных операций.			

Раздел 2 Аддитивные технологии (Хайтек квантум)							
Создание собственной 3Д модели.	Приобретение знаний по изготовлению и использованию 3D модели.	Самостоятельное выполнение трёхмерной модели специальной программе, с применением различных операций.	уметь строить работу исходя из принципов CDIO, SCRUM.	владеть базовыми навыками работы в современном инженерном программном обеспечении	Освоение учебного материала.		
Создание объемно- пространственной композиции в программе.	Выполнение различных операций в специальных программах.	Самостоятельное выполнение трёхмерной модели специальной программе, с применением различных операций.	уметь строить работу исходя из принципов CDIO, SCRUM.	владеть базовыми навыками работы в современном инженерном программном обеспечении	Освоение учебного материала.		
Подготовка моделей к печати в программной среде Cura.	Выполнение различных операций в специальных программах.	Самостоятельное выполнение трёхмерной модели специальной программе, с применением различных операций.	уметь строить работу исходя из принципов CDIO, SCRUM.	владеть базовыми навыками работы в современном инженерном программном обеспечении	Освоение учебного материала.		
Защита проекта							
Предзащита и доработка проектов.	Подготовка к защите итогового учебного проекта.	Разработка презентации, доработка проекта.	Уметь работать в команде: планировать время, распределять роли и т.д.	Уметь работать на высокотехнологичн ом оборудовании (аддитивное, фрезерное, паяльное, ручное, КИП-оборудование и др.)	Презентация результатов, доработка и тестирование.		

Защита проектов.	Публичное	Представление	Уметь работать в	Уметь работать на	Представление
Итоговая рефлексия.	представление итогов проектной	проекта, оценка результатов.	команде: планировать	высокотехнологичн ом оборудовании	выполненных проектов, итоговое завершение.
	деятельности.		время, распределять роли и т.д.	(аддитивное, фрезерное, паяльное, ручное,	
			рози и т.д.	КИП-оборудование и др.)	

1.4 Планируемые результаты

По итогам модуля у учащихся должно сформироваться представление о современных технологиях, этапах и методах их проектирования.

Обучающиеся должны знать:

- основы и принципы теории решения изобретательских задач, овладение начальными базовыми навыками инженерии;
- принципы проектирования в САПР, основ создания и проектирования 3D-моделей в Blender;
- основы и овладение практическими базисными знаниями в работе на аддитивном оборудовании;
- основы и овладение практическими базисными знаниями в работе с ручным инструментом;
- основы и овладение практическими базисными знаниями в работе с электронными компонентами.

Уметь:

- работать в команде: работа в общем ритме, эффективное распределение задач и др.;
- ориентироваться в информационном пространстве, продуктивно использовать техническую литературу для поиска сложных решений;
- ставить вопросы, связанные с темой проекта;
- выбирать наиболее эффективное решение задач в зависимости от конкретных условий;
- проявлять техническое мышление, творческую инициативу, самостоятельность;
- способность творчески решать технические задачи;
- способность правильно организовывать рабочее место и время для достижения поставленных целей.

2. Комплекс организационно-педагогических условий

2.1 Календарный учебный график

Даты для каждой группы проставляются отдельно.

Занятия могут проходить как по очной форме обучения, так и по заочной форме с применением дистанционных образовательных технологий.

No	Календарн	Форма	Кол-во	Тема занятия	Место
Π/Π	ый период	занятия	часов		проведения
1	Неделя 1	Очная	6	Вводное занятие. Вводный инструктаж по ТБ. Методы поиска изобретательских задач.	Хайтек
				Blender. Интерфейс программы. Работа с окнами.	
2	Неделя 2	Очная	6	Способы навигации в окне 3Д вида. Работа с меню. Поля ввода. Основы моделирования. Параметр Scale.	Хайтек
3	Неделя 3	Очная	6	Топология. Работа с множеством объектов. Цифровой скульптинг.	Хайтек
4	Неделя 4	Очная	6	Цифровой скульптинг. Создание материала и текстурирование 3Д – модели.	Хайтек
5	Неделя 5	Очная	6	Создание материала и текстурирование 3Д – модели. Знакомство с принципом анимации по ключевым кадрам.	Хайтек
6	Неделя 6	Очная	6	Знакомство с принципом анимации по ключевым кадрам. Знакомство с виртуальным освещением.	Хайтек
7	Неделя 7	Очная	6	Знакомство с виртуальным освещением. Визуальные эффекты.	Хайтек
8	Неделя 8	Очная	6	Визуальные эффекты. Знакомство с анимацией. Созданием анимации движения ЗД – объекта.	Хайтек
9	Неделя 9	Очная	6	Знакомство с анимацией. Созданием анимации движения ЗД – объекта. Создание собственной ЗД модели	Хайтек
10	Неделя 10	Очная	6	Создание объемно- пространственной композиции в программе. Создание объемно-пространственной композиции в программе	Хайтек

11	Неделя 11	Очная	6	Создание объемно-	Хайтек
				пространственной композиции	
				в программе. Подготовка	
				моделей к печати в	
				программной среде Cura.	
12	Неделя 12	Очная	6	Предзащита и доработка	Хайтек
				проектов. Защита проектов.	
				Итоговая рефлексия.	

2.2 Условия реализации программы

Материально-техническое обеспечение программы:

Верстак (4 шт.), Верстак, 825х1500х700 мм (3 шт.), Гигрометр ADA ZHT 100-70, Доска-флипчарт магнитно-маркерная (70х100 см) BRAUBERG Стандарт, Источник бесперебойного питания, тип 1 Power Smart ULB-800 (6 шт.), Клеевой пистолет BOSCH PKP 18 E (11 шт.), Многофункциональный инструмент Гравер Dremel 3000-1/25, гибкий вал и набор насадок 25 шт. (3 шт.), Мультимерт, тип 1 APPA 30R (4 шт.), Промышленная тележка подкатная (2 шт.), Рулетка NEO стальная лента 3мх19 мм магнит 67-113 (2 шт.), Станция паяльная цифровая (фен+паяльник), Lukey (Китай) (6 шт.), Стол, тип 1 (7 шт.), Стол, тип 2 (3 шт.), Стол, тип 6, Стул для педагога, Стул ученический регулируемый 1 (8 шт.), Стул ученический регулируемый 2 (3 шт.), Тумба тип 2, Тумба, тип 1, Утюг Махwell MW-3042 1800Вт, подошва из нерж. Стали (2 шт.), Цифровой штангельциркуль (7 шт.), Электролобзик Макіта 4329, рез 65мм,ход 18мм (2 шт.), Промышленный пылесос, Весы электронные ВК-3000 (3 шт.), Станция паяльная индукционная, 2 канала МЕТСАL в комплекте с наконечниками (2 шт.), Аппарат точечной сварки FUBAG,Ю Лазерный гравер Trotec Speedy-100 Flexx, Вращатель для гравировки цилиндрических изделий с конусами, Фрезерный станок тип 1 Roland MDX-50, Фрезерный станок тип 2 Roland SRM-20 (2 шт.), Сверлильный станок настольный Bosch PBD 40 0603B0700

Источник питания программируемый, Интерактивная панель (Доска LED интерактивная сенсорная, модель Престиж 65, МФУ Canon + SENSYS MF744Cow, Стационарный ПК тип 1 Flextron (R5-2600/16Гб/SSD 128Гб/HDD 1 Тб/видеокарта RTX 2060 8Гб/Windows 10/клавиатура/мышь (11 шт.), Монитор BENQ 27" BL 2783 (11 шт.), Специализированный компьютер для станка с монитором Elextron (R5-3400G/8Гб/SSD 128Гб/Windows 10/клавиатура/мышь/могитор 24" 1920х1080) (3 шт.), Режущий плотер Mimaki CG-60SRIII, Аккумуляторный многофункциональный инструмент (мультитул) (3 шт.), Поворотная ось Roland ZCL-50, Источник бесперебойного питания ИБП FSP DPV 2000 (4 шт.), Напольная мобильная стойка, Тумба металлическая для инструмента (тележка), Шуруповерт Bosch GSR 12V-15 FC Professional (3 шт.), Пила торцовочная Metabo KGS302M, Сабельная пила Makrita JR 3070СТ, 3Dсканер тип 2 RangeVision, 3D-принтер учебный Anycubic(10 шт.), Осциллограф DS4014, Генератор сигналов/осциллограф/мультимерт портативный HANTEK DSO 8202E, Настольный мультимерт Fluke 8846A (3 шт.), Токовые клещи/мультимерт APPA 30R (5 шт.), Мультимерт, тип 2 DM3058, Фрезерный станок тип 2 Roland SRM-21, Фрезерный станок тип 2 Roland SRM-22, Фрезерный станок тип 2 Roland SRM-23, Шкаф металлический инструментальный 1820x871x550, Стол паяльщика с дополнительным освещением, 665-965x1035x700 мм (3 шт.),

Стойка размещения ПК для станка, 1715х835х815 мм (3 шт.), Стеллаж 5 полок,2000х1330х600 (3 шт.), Стол для педагога (2 шт.), Кресло, Стеллаж, тип 1 (2 шт.), Широкоформатный полноцветный принтер Epson SureColor SC-T7200, 3D-принтер фотополимерпный Formlabs, 3D-принтеры расширенного формата Hercules, 3D-принтеры с двумя экскрудерами тип 2 Raise, Камера отверждения Formlabs.

2.3 Формы аттестации

Формы оценки уровня достижений обучающегося

Для контроля и самоконтроля за эффективностью обучения применяются методы:

- предварительные (наблюдение, устный опрос);
- текущие (наблюдение);
- итоговые (проект).

Формы фиксации образовательных результатов

Для фиксации образовательных результатов в рамках курса используются:

- отзывы обучающихся по итогам занятий и итогам обучения.

Формы предъявления и демонстрации образовательных результатов:

- защита проектов.

Формы подведения итогов реализации программы

- педагогическое наблюдение;
- педагогический анализ выполнения обучающимися учебных заданий;
- защита проектов;
- активность обучающихся на занятиях.

2.4 Оценочные материалы

Основная форма аттестации – защита проектов.

Оценка результатов проектной деятельности производится по трём уровням: «высокий»: проект носил творческий, самостоятельный характер и выполнен полностью в планируемые сроки; «средний»: учащийся выполнил основные цели проекта, но в проекте имеют место недоработки или отклонения по срокам; «низкий»: проект не закончен, большинство целей не достигнуты.

Мониторинг образовательных результатов

Цель мониторинга образовательных результатов – сбор сведений об этапах и уровне достижения обучающимися результатов освоения образовательной программы.

Предмет мониторинга – результаты обучающихся на разных этапах освоения программы и программы в целом.

Система отслеживания, контроля и оценки результатов обучения по данной программе имеет три основных критерия:

- 1. Надежность знаний и умений предполагает усвоение терминологии, способов и типовых решений в сфере квантума.
- 2. Сформированность личностных качеств определяется как совокупность ценностных ориентаций в сфере квантума, отношения к выбранной деятельности, понимания ее значимости в обществе.
- 3. Готовность к продолжению обучения в ДТ «Кванториум» определяется как осознанный выбор более высокого уровня освоения выбранного вида деятельности, готовность к соревновательной и публичной деятельности.

Критерий «Надежность знаний и умений» предусматривает определение начального уровня знаний, умений и навыков обучающихся, текущий контроль в течение занятий, итоговый контроль.

Входной контроль осуществляется на первых занятиях с помощью наблюдения педагога за работой обучающихся.

Текущий контроль проводится с помощью различных форм, предусмотренных кейсами или дисциплинами. Цель текущего контроля — определить степень и скорость усвоения каждым ребенком материала и скорректировать программу обучения, если это требуется.

Итоговый контроль определяет фактическое состояние уровня знаний, умений, навыков ребенка, степень освоения материала по каждому изученному разделу и всей программе объединения. Формы подведения итогов обучения: защита индивидуального или

группового проекта; выставка работ; соревнования; взаимооценка обучающимися работ друг друга.

Критерий «Сформированность личностных качеств» предполагает выявление и измерение социальных компетенций: осознанности деятельности, ценностного отношения к деятельности, интереса и удовлетворенности познавательных и духовных потребностей. Предусмотрена психологическая диагностика и психологическая поддержка, педагогическое и психологическое наблюдение, проведение тестирования, анкетирования и других способов изучения личности.

Критерий «Готовность к продолжению обучения в ДТ «Кванториум» является временным в первом цикле реализации программы. Предполагает сформированность установки на продолжение образования в ДТ «Кванториум» по иным модулям разного уровня сложности. Также учитывает готовность ребенка к публичной деятельности и участию в соревнованиях через использование методов социальных проб, наблюдения и опроса.

Среди инструментов оценки образовательных результатов применяются:

- -контрольные задания по окончанию кейса;
- -психолого-педагогическое наблюдение в ходе занятий.

2.5 Методические материалы

В качестве методов обучения по программе используются наглядно- практический, исследовательский проблемный, проектные методы.

На занятиях используются различные формы организации образовательного процесса:

- Индивидуальная
- индивидуально-групповая
- групповая.

Формы организации учебного занятия:

- защита проектов;
- практическое занятие.

Педагогические технологии:

- технология проблемного обучения;
- технология проектной деятельности.

СПИСОК ЛИТЕРАТУРЫ

Знакомство с программой Blender

- 1. Blender Basics 4-rd edition (русское издание), Джеймс Кронистер Архивная копия от 29 ноября 2014 на Wayback Machine
- 2. Джеймс Крониестер / James Chronister. Основы Blender учебное пособие 4-е издание / Blender Basics 2.6. 2012. С. 416.
- 3. Blender для начинающих (автор Илья Евгеньевич) Архивная копия от 8 марта 2022 на Wayback Machine
- 4. Искусство Open Source // LinuxFormat : журнал. 2016. Январь (№ 1(204)). С. 44—48.
- 5. Прахов А.А. Самоучитель Blender 2.7.- С-Пб.: БХВ-Петербург, 2016 400 с.

Аддитивные технологии

- 1. Григорьев С.Н., Смуров И.Ю. Перспективы развития инновационного аддитивного производства в России и за рубежом // Инновации. 2013. Т. 10. С. 2-8.
- 2. Литунов С.Н., Слободенюк В.С., Мельников Д.В. Обзор и анализ аддитивных технологий, часть 1 // Омский научный вестник. 2016. № 1 (145). С. 12-17.
- 3. Смирнов, В.В., Барзали В.В., Ладнов П.В. Перспективы развития аддитивного производства в российской промышленности // Опыт ФГБОУ УГАТУ. Новости материаловедения. Наука и техника. №2 (14). 2015. С. 23-27
- 4. Сироткин О.С. Современное состояние и перспективы развития аддитивных технологий // Авиационная промышленность. 2015. № 2. С. 22-25.
- 5. Технологии Аддитивного Производства. Я. Гибсон, Д. Розен, Б. Стакер, Перевод. с англ. под ред. И.В. Шишковского. Изд-во Техносфера, Москва, 2016. 656 с. ISBN: 978-5-94836-447-6
- 6. Шишковский И.В. Основы аддитивных технологий высокого разрешения. СПб.: Питер, 2016. 400 с.: ISBN 978-5-496-02049-7.

Интернет-ресурсы для обучающихся

- https://www.blender.org;
- https://www.youtube.com/channel/UCLYrT1051M_6XkbEc5Te8PA;
- Blender 3D в ВК Крупное RU сообщество;

blender-3d.ru. — Уроки, форум с галереей и блогами, 3d модели. Архивировано 10 февраля 2012 года.

3d-blender.ru. — Уроки по 3D моделированию, переводы статей, коллекция аддонов (addons). Дата обращения: 5 декабря 2014. Архивировано 10 декабря 2014 года.